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CONVERGENCE OF A NON-STIFF BOUNDARY INTEGRAL 
METHOD FOR INTERFACIAL FLOWS 

WITH SURFACE TENSION 

HECTOR D. CENICEROS AND THOMAS Y. HOU 

ABSTRACT. Boundary integral methods to simulate interfacial flows are very 
sensitive to numerical instabilities. In addition, surface tension introduces 
nonlinear terms with high order spatial derivatives into the interface dynamics. 
This makes the spatial discretization even more difficult and, at the same 
time, imposes a severe time step constraint for stable explicit time integration 
methods. 

A proof of the convergence of a reformulated boundary integral method 
for two-density fluid interfaces with surface tension is presented. The method 
is based on a scheme introduced by Hou, Lowengrub and Shelley [ J. Comp. 
Phys. 114 (1994), pp. 312-338] to remove the high order stability constrain-t 
or stiffness. Some numerical filtering is applied carefully at certain places in 
the discretization to guiarantee stability. The key of the proof is to identify 
the most singular terms of the method and to show, through energy estimates, 
that these terms balance one another. 

The analysis is at a time continuous-space discrete level but a fully discrete 
case for a simple Hele-Shaw interface is also studied. The time discrete analysis 
shows that the high order stiffness is removed and also provides an estimate 
of how the CFL constraint depends on the curvature and regularity of the 
solution. 

The robustness of the method is illustrated with several numerical exam- 
ples. A numerical simulation of an unstably stratified two-density interfacial 
flow shows the roll-up of the interface; the computations proceed up to a time 
where the interface is about to pinch off and trapped bubbles of fluid are 
formed. The method remains stable even in the ftll nonlinear regime of mo- 
tion. Another application of the method shows the process of drop formation 
in a falling single fluid. 

1. INTRODUCTION 

Boundary integral methods are a popular choice for simulations of inlterfacial 
flows and have been used extensively to compute nonlinear surface wave [6], [19], 
[30], [35], [37], vortex sheet (no density difference) motion [3], [23], [26], [27], [36], 
[38], Rayleigh-Taylor instability [5], [35], [44], interfaces in Hele-Shaw cells [17], [24], 
and crystal growth and solidification [29], [40]. The advantage of boundary integral 
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methods is that they reduce the dimension of the problem by involving quantities 
along the interface only [34]. However, boundary integral methods designed for 
computing interface motion are very sensitive to numerical instabilities because 
the underlying problem is fairly singular. If left uncontrolled, these instabilities 
usually destroy the accuracy of the computations. 

Numerical instabilities have been observed by Longuet-Higgins and Cokelet [30], 
Baker, Meiron and Orszag [6], and Dold [19] in surface wave simulations without 
surface tension. In these simulations, the onset of the instability was delayed with 
the application of polynomial averaging smoothing techniques. It is important to 
note, however, that these ad hoc smoothing techniques do not completely eliminate 
the numerical instability. 

Computations of interfacial flows with surface tension are even more sensitive 
to numerical instabilities because surface tension introduces nonlinear terms with 
high order spatial derivatives into the interface evolution equations. Straightfor- 
ward discretizations of the surface tension term may lead to numerical instabilities. 
Pullin [35] was one of the first to experience this difficulty. Using a boundary in- 
tegral method for computing two fluid interfacial flows, Pullin noted small-scale 
corrugations in regions of high curvature in the interface profile that appeared only 
with nonzero surface tension, in addition to a sawtooth instability of the type de- 
scribed by Longuet-Higgins and Cokelet [30]. While he could partially delay the 
sawtooth instability with polynomial averaging, eventually the appearance of the 
first type of numerical instability, associated with surface tension, caused the com- 
putations to end. 

Using also a boundary integral method, Rangel and Sirignano [36] limited the 
growth of modes with high wavenumbers by doing redistribution and point insertion 
of vortices. This procedure gives a smoothing effect very similar to that of the 
vortex-blob method [26] or the vortex-in-cell method used by Tryggvason [44] and 
it becomes very difficult to distinguish the real effects of surface tension with this 
regularization. 

Linear analysis about equilibrium has helped to identify common sources of 
instability in boundary integral methods. Without surface tension, Roberts [37] 
showed how to remove a sawtooth instability. 

In recent works [4, 7], numerical stability analyses were presented in two different 
contexts of interfacial flows with surface tension. Baker and Nachbin [4], performed 
normal mode analysis for several boundary integral schemes to study the linear 
evolution of periodic perturbations of a flat vortex sheet. With this linear analysis, 
Baker and Nachbin were able to identify common causes for numerical instability. 
However, their study did not consider the behavior of perturbations away from 
equilibrium and left open the questions of nonlinear stability and convergence. 

Beale, Hou and Lowengrub [7], hereafter referred to as BHL, presented a conver- 
gence proof of a boundary integral for water waves with or without surface tension. 
Following a framework developed in [9] for linearized motion perturbed about an 
arbitrary smooth solution at the continuous level, BHL found that very delicate 
balances among terms with singular integrals and derivatives must be preserved at 
the discrete level in order to maintain numerical stability. They also realized that 
suitable numerical filtering is necessary at certain places to prevent the discretiza- 
tion from introducing new instabilities in the high modes. This filtering depends on 
the choices for approximating spatial derivatives and quadrature rules for singular 
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integrals. Spectral methods are no exception. Indeed, the periodicity of the numer- 
ical solution introduces aliasing errors which ultimately become another source of 
instability and consequently, some Fourier filtering is also required in this case. 

Another major difficulty in numerical simulations of interfacial flows with surface 
tension, is related to time discretizations. Surface tension introduces terms with 
high order derivatives both nonlinear and nonlocal into the interface dynamics. 
This leads to severe stability constraints for explicit time integration methods and 
makes the application of implicit methods difficult [13, 24]. For two fluid interfaces 
in Euler flow, the stability constraint is of the form At < C. (AS)3/2, and for Hele- 
Shaw flows is At < C. (AS)3, where At is the size of the time step and As is the 
minimum grid spacing in arclength. In practice, these time-dependent constraints 
become more severe by point clustering along the interface. This imposes a serious 
limitation for well resolved computations. The presence of such restrictions on the 
time step is known as stiffness. 

In [24], Hou, Lowengrub and Shelley, hereafter referred to as HLS, introduced 
methods that remove the high order stiffness in computing the motion of fluid 
interfaces with surface tension in two-dimensional, irrotational and incompressible 
fluids. Their schemes are based on a spectral discretization of a boundary integral 
reformulation using two natural variables: the tangent angle 0 to the curve and the 
arclength stretching a, which is the derivative of the arclength with respect to a 
Lagrangian marker a. In these variables, the surface tension term has a very simple 
form because the local curvature becomes 0a/u. HLS identified the leading order 
stiff terms and treated them implicitly in time discretizations. These semi-implicit 
methods can be solved easily once a suitable parametrization of the interface is 
chosen. The methods are efficient and give an enormous saving in computational 
time [23]. 

In this paper, we present a method designed for general two-density fluid in- 
terfaces with surface tension in Euler flows, and study its nonlinear stability and 
convergence. The method is based on the spectral spatial discretization used by 
HLS, keeping time continuous. Thus, used in combination with the semi-implicit 
time discretizations proposed by HLS, our method also removes the high order 
stiffness introduced by surface tension. 

Our analysis is at a time continuous-space discrete level but we also study a 
fully discrete case for a simple Hele-Shaw interface and show that the time step At 
depends only linearly on the mesh size h, i.e., At < Ch. Our analysis also indicates 
how the stability constant C depends on the regularity of the solution, especially 
the curvature. 

We apply certain Fourier filtering in the method at places suggested by our 
stability analysis to preserve the balance among most singular terms. With this 
filtering as part of the method, we are able to prove rigorously its convergence to the 
exact solution with spectral accuracy provided the solution is sufficiently regular. 
This is the content of Theorem 1. 

Our proof follows a framework developed in [8, 10] to study the linearized motion 
about smooth solutions of two fluid interfaces with surface tension in the continuous 
case, in the same spirit of BHL's convergence proof of a method for water waves 
[7]. The key is to identify the leading order singular terms of the method and 
to make sure that a delicate balance among these terms is satisfied. However, the 
situation is more complicated than that in the water waves scheme studied by BHL. 
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In our case, the formulation is different and more general because it applies to two- 
density fluid interfaces of which water waves is a special case, and it uses a and 0 
as evolution variables to determine the interface position rather than the Cartesian 
coordinates x and y. 

By adding a tangential velocity, we select a parametrization such that, a 
R(a)Ka), where the brackets denote average in space and R is a smooth function 
of mean one. R can be chosen at our advantage to obtain some control on the 
positioning of the interface Lagrangian particles. Thus, we may cluster particles in 
neighborhoods of singular points (taking R small there) and separate the particles 
in over-resolved regions. While this parametrization can give a substantial improve- 
ment in the resolution, it introduces new technical difficulties into the analysis. In 
particular, we find that a natural variable to use in the computation of the velocity 
is the true vortex sheet strength y = 'y/j, where -y is the unnormalized vortex sheet 
strength. By filtering y in the velocity, we are able to show, through delicate energy 
estimates, that the most singular terms of the method balance one another. We 
do not claim that the application of Fourier filtering to eliminate aliasing errors is 
unique but we do show that our choice gives a nonlinearly stable and convergent 
discretization. The same ideas can be applied to construct nonlinearly stable and 
convergent methods for Hele-Shaw flows, and dendritic solidification problems. 

The rest of the paper is organized as follows. Section 2 is devoted to describe the 
boundary integral reformulation introduced by HLS and their ideas to remove the 
high order stiffness. In Section 3, we present our numerical method and state the 
convergence result (Theorem 1). The proof of this theorem is given in Section 4. 
Finally, in Section 5, some numerical examples are included to demonstrate the 
robustness of the method. A numerical simulation of an unstably stratified two- 
density interfacial flow shows the roll-up of the interface; the computations proceed 
up to a time where the interface is about to pinch off and trapped bubbles of fluid 
are formed. The method remains stable even in the full nonlinear regime of motion. 
Another application of the method shows the process of drop formation in a falling 
single fluid. 

2. A BOUNDARY INTEGRAL REFORMULATION FOR TWO FLUID INTERFACES 

In this section, we present the boundary integral reformulation introduced by 
HLS for two fluid interfaces and describe their ideas to remove the high order 
stiffness caused by surface tension. Specifically, we concentrate on the motion of an 
interface F separating two infinite layers of inviscid, incompressible and irrotational 
fluids in two dimensions. Under these assumptions, potential flows exist in the 
interior of the layers and the flow can be described by variables defined on the 
interface only. The boundary conditions we impose are 

(i) [u]r n = O, 

(ii) [P]r = 's, 

where [u]r n A and [p]r denote the jump in normal velocity and pressure across 
the interface, respectively. The constant r is the surface tension coefficient and 
n the local curvature. The kinematic condition (i) is the usual requirement that 
particles on the surface, remain there. The dynamic condition (ii) is known as 
Laplace's formula [28]. With these hypotheses we can obtain a boundary integral 
formulation for the interface evolution equations. Here we give only the equations, 
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the details of the derivation can be found in [6]. Denote the interface position by 
X(a,t) = (x(a,t),y(a,t)), where a is a Lagrangian parameter a,ncl let it and 
be unit normal and tangential vectors to the interface. The mean velocity on the 
interface can be evaluated by the following Cauchy principal value integral 

(1) W K (X(a) - X(a')) y(a') da', 
-Do 

where the singular kernel K is given by 

f )=2i x2(a) + y2( C' 

and ay is the unnormalized vortex sheet strength. Given -y(a, t) and X (c, t), the 
interface normal velocity is determined by UN = W nt and this complies with the 
kinematic boundary condition (i). On the other handl, we have freedoimi to select 
the tangential velocity. We take this to be UT + UA, where UT = W . S and 
UA is yet arbitrary and its choice determines the frame of reference. To update 
the velocity we need an evolution equation for -y, this equation follows from the 
dynamic boundary condition (ii). The interface evolves accordinlg to the following 
equations 

(2) Xt =UNf + (UT + UA), 

(3) yt = SKO + ( )a -2A[oWt S+ 8 (-) +gy 1 -UAWQ 51, 

where oC (x2 +Y 2)1/2 is the arclength stretching variable and A = (P1-P2)/(P1+P2) 
is the Atwood number which measures the flow stratification. Here, P1 (P2) is the 
dcensity of the fluid below (above) the interface. The constant S = 2T/(pI + P2) 
is a rescaled surface tension coefficient and g the gravity acceleration. The local 
curvature K, is given by 

(X2 + y2 )3/2 
The subindex a denotes partial differentiation with respect to that variable. 

From this set of equations we observe that the surface tension enters into the 
interface dynamics terms with high (third) order derivatives nonlinearly andl non- 
locally, making implicit time discretizations very difficult. 

A "frozen coefficient" linear analysis about an arbitrary sm-iooth solution for the 
evolution equations (2)-(3) gives the following stability constraint for an explicit 
time integration method [13, 24], 

At < -(7h)32 with C _ mino. 
S al, 

Although the exponent 3/2 may not seem very restrictive, this stability constraint is 
still very severe because of its dependence on v7. As the interface evolves, Lagrangian 
particles tend to cluster in some regions and cause C to be very small. This time- 
dependent behavior usually leads to prohibitively stiff systems. 

The first step in the HLS nonstiff method is to reformulate the interface evo- 
lution equations in terms of the tangent angle 0 and the arclength stretching o7. 

In these two new variables, the surface tension term has a very simple form: 
SK, = S(O.1/0),,. This approach has been used previously by Kessler, Koplik 
and Levine [25] for interface evolution problems, by Strain [40] in the context of 
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solidification, by Goldstein and Petrich [21] for integrable closed curve dynamics, 
and by Meiburg and Homsy [32] for Hele-Shaw flows. 

If we assume that an interface moves according to Xt = UNf + (UT + UA)>, 
then the evolution equations for Co and 0 are given by (see, e.g., [15, 24]) 

(4) 07t (UT + UA)X _- OUN, 

(5) t 
I [UN + 0 (UT + UA)]. 

Note that the evolution equations (4)-(5) can be used in many other different con- 
texts depending on how the velocity is determined. Examples include motion by 
mean curvature, dendritic solidification and Hele-Shaw interfaces. 

In the particular case of an interface in Euler flows the velocity W (U, V) 
defined in (1) has a succinct form when expressed in terms of the complex position 
variable z = x + iy, 

(6) W = 2 () da' = U -iV. 
2iri __ z (a) - z(a') 

Moreover, if we assume that the interface is periodic in the x direction, that is 
z(a) = a + s(a) with s(a) a 27r periodic function, then it can be shown [2] that 

1 1 
(7) W = i j y(a') cot 2 (z(a) - z (a')) da'. 

The complex position z may be obtained from Co and 0 by integrating zo, c eio 
or equivalently 

(8) z(a) = a+ (C(a')eiO(a') - KcxezO))da' + zo, 

where the brackets denote the mean or average in space over one period, that is 
1 j (27r 

and we have also used that (zn) =1 + (so) = 1, as s(a) is periodic. A discretization 
of (8) enforces the periodicity assumption on z [24]. The integration constant zo 
can be determined by evolving one single point of the interface in time. When the 
two layers of fluid are infinite in the y-direction, zo provides just a translation to 
the curve and does not influence its dynamics. For simplicity we take zo = 0. 

There is still freedom in selecting the additional tangential velocity UA. Fol- 
lowing HLS, we choose UA such that the arclength stretching variable satisfies the 
following condition, 

(9) ac(a, t) = R(a) ( f), 

where R(a) is a given smooth function of mean one. This condition gives us some 
control on the positioning of the Lagrangian markers. In particular, if we know in 
advance where some complexity of the curve is located, R can be selected to cluster 
particles about that region to achieve better resolution. It can be shown [15, 24] 
that if 

(10) UA = UT + j [0c,UN - R(a)(0aUN)]da/, 

then this choice of UA enforces the constraint (9) for all time provided it is satisfied 
initially. 
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We can now write the reformulated evolution equations of the interface in the 
following form, 

(I 1) o7t =-R(a) (O) UN), 

(12) ?t= -[Uj + O (UT + UA)] 
07 

at = S( ) + (U A), 

(13) 47Q 1 
-2 A [Reoe t + - Re{ e eV I I 

[~~'~~ 8 o7 

where UN -Im{ei0W} and UT Re{elOW} with Re and Im denoting the real 
and imaginary parts respectively. Actually, we could cancel the parametrization 
factor R(a) in (11) and obtain an evolution equation for the average K(C). However, 
equation (11) allows for a more general setting. 

The surface tension term S(O,1/o)-, affects the evolution of 0 through the vortex 
sheet strength a in the velocity field. Thus, UN is the term that contributes the 
most to the stiffness in (12). This nonlocal effect makes difficult the application 
of implicit time discretizations. However, an important fact is that stiffness arises 
from high order terms only at small spatial scales; the time step has to be small 
enough to resolve the propagation of capillary waves [13]. 

The next step in HLS approach is to extract the leading part of the velocity at 
small scales (high modes). To this end, we consider the expression (6) for W and 
write the kernel as follows 

1 _ 111 

z(a) - z (a') za (a)(a - a,) 
+Z(a) 

- 
z(a') 

za (a) (a -a') 

Using this expression, we write VV as 

1 00 1(')1 
(14) W da 2 [-y] + -y (a' g(a ') ' 

27rz'0 z (a) - z (a) 2iz'1' __ 

where 'H is the Hilbert transform defined by 

(15) 1([f1(av) = j X f' (ada/. 

The last term in (14) is of lower order because a is integrated against the smooth 
function g. Therefore, it follows that [24] 

UN (a, t) 'H= [y] (a, t) + Rs [y] (a, t), 

where R, is a smoothing operator in the sense that if x(a, t) and y(a, t) are real 
analytic functions of a for t < T and oC + 0, then the Fourier transform of R, 
satisfies R&['y] - O(C-Pjklj) for large wavenumber Ik . Here, p > 0 is the width of 
the strip of analyticity about the real axis. If x(ca, t) and y(ca, t) are not analytic 
but Cn7, then R.[-y] = OkK). Thus, at high modes, 

-U7 2 (1t []) 
o 

where by - we mean equivalent modulo a smoothing operator. The evolution 
equations for 0 and a can now be written in a form that reveals the leadiing order 
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behavior at small scales. 

(16) At 

0 

'H +P' 

(17) at = S( a)c + Q, 

where P is defined as the right hand side of (12) minus the high mode leading term 
and Q is the right hand side of (13) without the surface tension term. 

The leading order terms simplify considerably if C is independent of cv. This can 
be achieved by taking the parametrization function R identically equal to one. In 
this particular case, the system (16)-(17) in Fourier space becomes 

(18) St(k) 212 kl(k) + P(k), 

(19) at (k) =- Sk (k) + Q (k)) 

where we have used that 7if(k) -i sgn(k)f(k). An implicit time discretization 
of the high mode leading order terms is now trivial to solve. If R 0 1, we can 
recast the system of equations obtained by a semi-implicit discretization in a form 
suitable for an efficient iterative method [15, 23]. 

3. THE NUMERICAL METHOD 

We may construct a numerical scheme for the interface evolution equations (11)- 
(13) simply by providing rules to approximate the spatial derivatives and the sin- 
gular integrals. However, just as it has been observed by BHL [71 in the case of a 
boundary integral method for water waves, straightforward discretizations usually 
lead to unstable schemes. More precisely, a stable discretization must maintain a 
very delicate balance among the leading order singular terms of the method. To 
guarantee this balance, some Fourier filtering has to be applied selectively as part 
of the discretization. The spectral accuracy does not eliminate the need for numer- 
ical filtering. Indeed, the periodicity enforced on the numerical solution leads to 
aliasing errors that ultimately upset the stability balance. 

We present and analyze here a spectrally accurate method for two-fluid inter- 
faces. The analysis is more complicated than that of the water waves scheme studied 
by BHL. Here, we have a more general and different formulation for the interface 
dynamics. 

Let us define first a discrete Fourier transform of a periodic function f whose 
values are known on a uniform grid of mesh size h = 27r/N by 

f N/2 

f k- = N E f (a3-)e-ikcej; aj = jh, 
j=-NI2+1 

with inverse or Fourier interpolant given by 

N/2 

f (j) E fkeiki 

k=-N/2+1 
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Here we assume that N is even. Our numerical filtering is defined in Fourier space 
as follows: 

(20) (fp)k= p(kh)fk, 

where p is a cutoff function with the following properties 

(i) p(-X) = p(x) ; p(x) > O, 

(ii) p(x) E C 71; i- > 2, 

(iii) p(Lw) = p' (Q ) = O, 

(iv) p(x) = I for lxl < AX 0 < A < 1. 

Condition (iv) ensures the spectral accuracy of the filtering. While the selective use 
of filtering in our method prevents high mode instability, it introduces new technical 
difficulties into the analysis; the commutator of the filtering (f(a)o )P _ f(a)OP 
for regular f, is not smooth enough to be absorbed into low order terms and its 
particular form, which depends on the properties of p must be taken into account 
in the energy estimates. 

We compute the spatial derivatives with a pseudo-spectral approximation, which 
we denote by Sh, and with a coinbination of this approximation and our Fourier 
filtering. This combination is denoted by Dh, that is 

(Sh f)k = ikfk and Dh fi = Sh fi 

Hereafter, we denote by uo(ao), 0(cai), -y(aj), etc., the exact continuous solution 
evaluated at the grid points, and by vj, Oi, y.j, etc., the discrete approximation. To 
simplify the notation we omit writing the time dependence on the functions unless 
otherwise noted. 

Another difficulty is introduced by the parametrization, and special care must 
be taken in discretizing 7y to compute the velocity W. We approximate 7(aj) by 

o j where yj = 7j/oj, and use the alternate-point trapezoidal rule, 

N/2 

(21) Wi Z _ O-jcot2(Zi -ZP)2h. 
j=-N/2+1 
(j - i) odd 

As we will see later, using 
-? 

instead of would introduce a term that may lead 
to instability. 

Sidi and Israeli [39] showed that the alternate-point trapezoidal rule applied to 
periodic Cauchy kernels such as those considered here, gives spectral accuracy. This 
quadrature has been used extensively in vortex sheet computations [4, 7, 26, 38]. 

We still have to provide a discretization for the map (8) to determine the complex 
position variable z in terms of u- and 0. We do this with the following approximation, 

(22) zi = ai + Intl}(uei2o- Keio);h)i, 

where Inth is the pseudo-spectral integral operator defined in Fourier space by 

fikfk for k 0, (Inth f)k )- fork0 
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for any 27r-periodic function f of mean zero. The discrete mean is computed using 
the trapezoidal rule, 

N/2 

(f)h N Z fi 
i=-N/2+1 

Note that, without loss of generality, we have also set to zero the integration con- 
stant zo. 

The discretizations for the tangential and normal velocities come from the the 
approximation (21) for W, 

(23) -Im{e'O?Wj} and U7T = Re{e'0 Wj}. 

Now, recall that the parametrization of the interface is determined by our choice (10) 
of the added tangential velocity UA. This velocity is calculated using the next dis- 
cretization, 

(24) UA -UT + Inth (Dh U - R(Dh 0 UN)h)i. 

Our method may be written as follows 

(25) dt - -R(ai)(Sh OUN)h, 

(26) d0i - 
I 

[Sh UN + Dh 0 (UT + UA dt oi 

= S Dh(-Dh i) + Dh (UQi?) + Fi 
(27) dt vi 

-2A[8 Dh aQ + gcr sin 0%-UARe{ezoi Sh Wi}], 

where the term Fi in (27) is an approximation to -2ARe{cei0Wt} which we split 
into two terms 

Fi -2ARe{ N2 y - cot z2)2h} 

(28) (j-i) odd 

+ARe{ u~e~0~ N/2 _dzj + ARef 
p 

dt~2 d,j p -2h}. 

iOi~ ~ 'j N/ (zip - dZi 
47ri 

j=-N2+1 sin zj-(z ) 
(j - i) odd 

Note that Fi is not obtained directly by differentiating with respect to time our 
approximation (21) for W. If such a discretization were used instead, it would in- 
troduce explicit filtering to the dependent variable d'y /dt. This is both unnecessary 
and unsatisfactory. It should be noted here that, unless A = 0, the expression (27) 
is a discrete version of an integral equation for d-yi/dt. Later we will show that this 
discrete linear system for d[yi/dt is invertible. Therefore, d-yi/dt can be expressed in 
terms of other variables that have been filtered. As a result, d-yi/dt has the filtering 
effect implicitly. On the other hand, we do need filtering on 'y in the term that 
comes from the derivative of the kernel (second term in (21)) to avoid high mode 
instability. This is quite different from the case for the water wave problem where 
we do not need an evolution equation for -y. 
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The derivative of z with respect to time in the second term of (28) is obtained 
from (22), that is 

dz2 do-__j dO do-uZ dO 
(29) dt - Inth ( de2 + ie - dc + iae 

at ~ dt dt dtt 

where du/dt and dO/dt are the right hand sides of (25) and (26), respectively. 
As we will see in the analysis, it is crucial for numerical stability that the leading 

order terms of Sh U7N/ i must balance the surface tension term S Dh(Dh O./ai) and 
a term that comes from the derivative of the added tangential velocity in Dh(U, i). 
The use of -Pof3 in computing the velocity, the properties of the main part of the 
quadrature for the velocity (a form of a discrete Hilbert transform), and the relation 
of its derivative with the pseudo-spectral derivatives of our discretization (Lemma 
2, below) are the key to achieve this delicate balance in the energy estimates. At 
the same time, special care must be taken not to introduce high mode errors; this 
is the role of our Fourier filtering. The importance of the filtering will become clear 
when extracting the leading order terms of the discretization. 

We state now a convergence theorem for this numerical method. 

Theorem 1. Assume that for 0 < t < T there exist a regular solution of the 
evolution equations of the interface (11)-(13) with a(., t) , O(., t) and -y(, t) belonging 
to C7l+3[-Xr,r7] for m > 4 and that Iz(a,t) - z(0,t) > CIa - holds for some 
C > 0. If o;h, Oh and a/h denote the numerical solution of (25)-(27), then for 
h < ho(T) we have, 

kTh(t)-o 1t)K2 < C(T)hm, 

10h(t) -O(.,t)flHi/2 < C(T)hm7, 

|7h (t)- -a(-, t) 11 2 < C(T)h nt) 

where 
N/2 

Itll2 = 
I 
lUj 12, 1UH2 S 

j=-N/2+1 

N/2 

h|U|121/2 = 2r 5 (1 + p(kh)Ikl) Iuk . 

k=-N/2+1 

To be consistent with the hypothesis on the regularity of a(., t), we assume that 
the parametrization function R is a given C0m+3 [-_r, ir] function of mean one. 

The proof of this result is divided in two main parts: Consistency and Stability. 
The latter is the most technical part of the proof and it is divided itself into three 
subsections. 

4. CONSISTENCY 

We examine next how accurately the exact solution satisfies the discrete system 
of equations. First note the spectral accuracy of the pseudo-spectral operators (see, 
e.g., [43]). If f (a) is a periodic C'+1 [-ir, ir] function, then 

(30) | Sh f(ai) - fc(ai)I < Chs |f ffHs+1? 

(31) | Dh f(ai) - fa(ai)I < Chs flflHs+1 
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and for our Fourier smoothing we have that 

(32) IfP(ai) - f (ai) I < Chs?l Ilf 1Hs+1. 

It is well known that the trapezoidal quadrature rule, when applied to periodic 
functions gives spectral accuracy [22], that is, 

N/2 X 

(33) E f (aj)h - f (a)da < Chs+ Ilf 11Hs+1. 
j=-N/2+1 

Similarly for the pseudo-spectral integral operator, we have 

(34) JInth(g( ))i-j g(a)dall < ChS+l19gH1Hs, 

for zero-mean and periodic g(a) E Cs [-r,ir]. Thus, from these observations and 
from the assumption on the regularity of the exact solution, it follows that 

Zh(ai) - ai + Inth (cT(.)ee () e - )h)i 

(35) ai + j (u,e'O - 1)da + O(hm+3) = z(ai) + O(hm?3), 

where we have also used that (zc(.)) =1 . 
Let us denote by Wh(ai), Uh,((ai), Uh a(ai), and UhN(ai) the velocities obtained 

by substituting the exact solution o(., t), 0(., t) and y(., t) into the discrete equa- 
tions (21)-(24), to distinguish them from the corresponding exact velocities. In 
order to examine the accuracy of the approximation for the velocity, we note that 

(36) /P(aj) = '(aj) + O(hm+3) -Y (aj) + O(hm+3) 
cT(aj) 

Thus, using the spectral accuracy of the smoothing and (35), we get 

oyP(ao.)ufc(aj) cot 2j(Z'(ai) - z'(aj)) = -y(a ) cot 2(z(ai) - z(a .)) + O(hm?+). 

It was shown in [7, 38, 39] that the alternate-point trapezoidal rule applied to this 
integrand yields spectral accuracy, that is 

N/2 1 

Z -y(aj) cot - (ZP(ai) - zP(aj))2h 
j=-N/2+1 
(j - i) odd 

- y (a') cot 2 (z(ai) - z(a')) da' + O(hm+2). 

Therefore, for our approximation to the complex velocity W, we have 

Wh ((Xi) - E tP(axj) a(aj) cot - (zP(ai)- zP (aj))2h 47ri 2 
j=-N/2+1 
(j-i) odd 

- W(aj) + O(hm+2). 

Note that since OP(ai) = O(ai) + O(hm+3), it now follows that 
N 

(ai) 
- UN (ai) + O(hm+2), 

T 
(ai) 

- UT (ai) + O(hm+2), 
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and using (31)-(34), we also have that 

UpAj) UA(ai) + O(hm+2). 

It is now easy to check the consistency for the a-equation (25), because 

(Sh 0 (-)UN. (-) 0)UN(-))/1 + 0(h )7,+ 

(Oa ( )UN (.)) + O(hmn+2) 

and consequently 

du (ai) =-R(ai)K(Sl O(.)Uh1(7))j1 + O(hm+2) dt 

Similarly, for the 0-equation (26) we obtain 

dt (a) = IT0 [Si, Ul/ (ari) + Di, O(CV,)(UT(ca.) + UA(cei))l + 0(h n.+ ). 

Now from (29), using (33) and (34), it follows that 

dzl, (aj) = d z 
(a.) + O0(h rn +2) dt1 dt 

Note also that we may write 

N12 dzh /, z1 a 

Z ~~~~ja)P ~~~~dt 2h 
j=-\Nj2+1 i22 (h(( h()2 
(j - i) odds ( 

N/2 

S E G(a, a) cot - (z(a )z(ay))2h + O(hM+2), 
j3=-N/2+1 
(j-i) odd 

where 

G(ai, aj) 2-y (a) sin(z(ai) -z(a 

Hence G(.,.) E C-+ [-7r, 7r (it has a removable singularity) and, as a result, the 
alternate point trapezoidal rule yields an O(h"') approximation for this integral. 
On the other hand, in view of (31), we have that 

D h(j D, O(ai)) ( 0 (ai) + 0(htmt) 

and similarly for the other terms of the -y-equation (27). The following lemma 
summarizes the accuracy of the numerical method. 

Consistency Lemma. The exact solution of the interface equations (11)-(13) sat- 
isfies the discrete evolution system (25) -(27) with truncation error of order 0 (h?"?2) 
for equation (25), of order O(hn?'l) for equation (26), and of order 0(h"t) for 
equation (27). 
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5. STABILITY 

Let us define the errors or variations between the exact and numerical solutions 
as follows 

0?j= (j 
- (Tj), 

dJ=oj - J0(aj) 

=Yj) - (aj) 

Our goal is to obtain a system of evolution equations for these errors and perform 
energy estimates to show they remain bounded in suitable discrete norms for t < T. 
Recall we are assuming that a smooth exact solution exists up to time T. To 
illustrate the idea, let us find an equation for 0. First, substitute the exact solution 
into (26) and use consistency. Then, substract the resulting equation to (26) and 
get 

d 
=-I[Sh U1 + DOi (UT + UA 

(37) dt [( 

- (19 [Sh Uh (a) + Dh 0(ai)(U7 (ai) + U4 (ai))] + O(hm ). 

Now, the right hand side of this equation can be written in terms of &j, 0j, and the 
variations in the velocities, 

1j.N UN~ UN 
Uil - U-h (ai), 

UT = UT -U 

ui --i -h ?i 
U A = UA -A 

Therefore, our first task is to estimate U[', lIJ, and Uft in terms of the errors 6i, Oi 
and -Y. This is accomplished by identifying the most singular part in the variation 
Wi = Wi - Wh(ao) of the complex velocity. The estimates separate into linear and 
nonlinear terms in vj, 0j and -Y. The nonlinear terms can be controlled because 
of the high accuracy of the method for smooth solutions. Thus, the leading order 
contribution comes from the linear terms. 

The following notation will help us handle low order terms arising in the stability 
analysis. We define a discrete s-th order smoothing operator, written generically 
A,s: as an operator satisfying 

11Dhj(A_s(q))jlj2 < CJJ01112 and IIA_s(Sh'q)1112 < CIIlbIl2 for 0 < I < s. 

Note in particular that Ao(Qb) is a 12-bounded operator, that is, JjAo(Q) 112 < 

CJJb1112. Moreover, it is easy to see that hsAo(0j) = As(bi). We also write 

A_s(>j fI jI ... vi j) _ A_s(q>) + ACs(fp) + . + A_s(1i). 

5.1. Estimates for the Variations of the Velocities. As noted by BHL [7], 

in estimating the variation in the complex velocity, it is easier to work with the 
kernel defined on the entire line rather than in [-7r, 7r]. The periodic extension is a 
straiglhtforward application of the formula, 

1 1 1 2z 
cot 2Z = - + Z2 (2k)2' 

k= 
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which converges uniformly in any compact set not containing the points z = 2k7r, 
with k integer [31]. We obtain (see [7, 15] for details) 

N12 I 

1 N / (aj) cot 2 (z(ai)-z(aj))2h 
j=-N/2+1 

(j-i)odd 

N(M+1/2) f(j 
lim J(:a) 2h. 

M-*oo0 z=NM12+(ai) - z(aj) 
j=-N(M+112)+l 

(j-i)odd 

To simplify the notation, we define 

-2h - lim N(+2 _______2h. 

z(a )-Z(aj) M-oo S Z(a ) - z(aj) 
(j-i)odd j=-N(M+1/2)+l 

(j-i)odd 

Analogously, a periodic extension of the numerical solution yields, 

N/2 f 

Z fj cot 2 (zi-zj)2h= 5 2h. 
j=-N/2+1 (j-i)odd 

(j-i)odd 

It is also convenient to extend the kernel 1/ sin2 z that appears in one of the terms 
of (28). In this case we get, 

N/2 dzi dzj dzi - dzj 

S Ajp dt dt 2h= 5 j( dt 2h 
j=-N/2+1 si2~z-~) (j-i)odd pz-~ 

(j-i)odd 

We devote the main part of this subsection to show that 

(38) wi = () Hh a - y(c. Hh i+.. 

2iza,(a) hYi 2za,(ai) h i 

where Hh is a discrete Hilbert transform given by 

(39) Hhfi-- S 2h. 
(j - i) odd ai -j 

Thus, the particular combination of Hh in (38), extracts the most singular part of 
Wi; the terms that we are omitting are of lower order. To obtain this estimate, we 
follow BHL [7] and write Wi as a sum of linear and nonlinear terms in the errors 
, y, and z as follows 

= 2wi ~ ~ ~ '~~' 2h + >5 z(~ h 
(40) ( J-t) odd Zh (ai)-Zh (aj) 211 i (- zP (ai) _d zP (a) 

- -i) od (U(aZh((a?) l j Z 2h + W)N 
____ dd(ZP(a,) - ZP(aj))2 
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where WUNL stands for the nonlinear part given by 

TINL - 1 _________2h Wi 27ri E h(lP Zh?j 
(j - i) oddh 

(41) + 2iij(~P.~ ? 2h 
(41) ~~27ri ( dd(ZP (a,i) ZP(aj))2 

- ) oddh h 

_ v ffjaS (ZiP ~_ Z2.)22h 

(7i-od (ZP (a,i) ZP (agj )) 2 (ZP (a, 
- 

)ZP .)+*P *p - (j-i) oddh h h h a)+ jp 

Our immediate task now is to estimate z in terms of &f and 0, and to establish a 
bound for the nonlinear terms. To this end, let us define the following time, 

(42) T* Sup{tlt < T, jljl112, fl1#112, 1lJh112 < h7"2 and IIdtI12 < h3/2}. 

Unless otherwise noted, all the estimates we obtain hereafter are valid for t < T*. 
At the end, we close this so called T*-argument, by showing that T* T. 

Note that since 
N/2 

hlOai2 < > Oi2h= 11l112, 

i- N/2+1 

we have that (for t < T*), 

HlH00 < h- /2<Oll2 < h3 

and similarly, 

JUJloo < h3 and <K < h3 

On the other hand, the variation -Zi- Zh(agi) is given by 

(43) Zi = Inth[(Uei)i - (((Tei0)i)h1, 

where 

(- u(ai)eio(ai) = ui(eo0-ei0(ai)) + &iei0(ai) 

Now, 

-ioi eio(ai) = ei(oio+(ai)) - -= ie%o() Oi + r(ai)02 

with HjrilKO < 1/2. Moreover, since 1l12 1l12 < Ch31161112, we get 

(44) -ioi _ -io(a) = iei0(i)6i + A-3(Oi)- 

Therefore, using this estimate and noting that oi = ou(ai) + &i, we get 

(45) (uei0)i = io(ai)e i(e)0i + ei0(e)6i + A3(Oi), 

where we have also used that 11&2 112 < Ch31&16112 to bound the nonlinear terms. 

Now, clearly (.>b)h = A-,(q) for f E C'. Consequently, substituting (45) 
into (43) we obtain 

Zi = Inth(ior()ei ()) + -nth(e ()f)i + A33(&i, 0i). 
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Recall that the frame is selected such that the initial parametrization is preserved 
up to a time dependent scaling. Thus 

(46) 6-i = R( - ) ([( uQ)h-(0f(-))] = R(aOi)(()h + 0(hm+3), 

where we have also used (33). The relation (46) tells us that the error in u- is on 
the scaling factor (u) h only. This time-varying factor may be pulled outside any 
spacial discrete operator. In particular, 

Inth (f (.) f)i = (K) h Inth (R( ) f (.) )i + O (hm+3) 

= f(adi)K(&)h + O(hm+3) = A-s(6-i) + O(hm+3), 

because both the parametrization function R and f are smooth. Similarly we have 

DI,(f(ai)j) = g(Cei)K&)h + O(hm+2) = A-s(&i) + O(hm+2) 

and the same is true for Sh instead of Dh. In this sense, terms involving & are of 
lower order. Thus, because of the control we have on u, the most singular terms 
are only those containing 0 and . 

With these observations and noting that z (a) = o(a)ei0(a) , we obtain our final 
estimate for z, 

(47) Zi = i Inth (zQ (.)O)j + A_3 (-i, Oi) + O(hm+3), 

from which we obtain the following bounds 

11zl112 < Ch7/2 and jjzHl0 < Oh3. 
Let us return now to (40), our expression for W. The first term involves v. 

Then, in view of (46), we have 

(48) 
1 

o Zhj (i aj) -Zh 2h = A_s(&i) + O(hm+3). 
(48) 

2iri~ 
(j i) odd - 

Now, to estimate the second term in (40), we first note that 

1 1 +(p 
z(a) -z(/3) zaQ(a) (a/3 

where g(., ) is a smooth function in both variables. On the other hand, by consis- 
tency of the approximation, 

1 1 I+0h+) 
zp(a ) - z V(a = (1 + O(h+)) z(a) - (a 

Thus, for the second term in (40), we obtain 

1 E o0-(aj)V 2h 

(49) (j -i) odd h h 

(1 + O(hm )) (2iZ Hh(0Vip ) + E 
d (ai, aj)j2h). 

The term involving the smooth function g, is a discrete operator which deserves 
special care. Let us denote a general operator of this type by Rh, that is 

(50) Rh(0i) = E g(a?,aj)0j2h 
(j - i) odd 

for g(-,) Cs. Clearly the continuous analogue of Rh, is a smoothing operator. 
However, this is not true at the discrete level, where Rh(fi) can be as singular as 
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il, [11, 24]. We overcome this difficulty with the application of Fourier filtering. 
Using the properties of the cutoff function p which defines our filtering, we obtain 
the following result proved by BHL [7]. 

Lemma 1. Let g(., ) in (50) be in CS with s > 3, then 

(51) Rh (b0) = A-2(Qi). 

This lemma explains the use of filtering on y when computing W. We will see 
below the reason for performing the smoothing on ~ = -y/l instead of -y. 

Note also that the commutator of the discrete Hilbert transform and a smooth 
function is an Rh operator, that is 

Hh(f (aCi)i) -f (ai) Hh(0i)= Rh((0i) 

Therefore, we can pull the smooth function oja) outside Hh in (49), at the expense 
of adding a term Rh(ip) = A-2(7'i). Consequently, 

(52) 1o-(aj) 2h =-Ou(ai) -H P)+A2 2fri h od (ai) _ Zp (a ) 2iz, (a) h 

This expression exhibits clearly the leading order contribution of Y in the variation 
W of the velocity. The dependence on the underlying smooth solution has been 
absorbed into the coefficient in front of Hh, which is a much simpler operator to deal 
with. In particular, Hh satisfies properties similar to those satisfied by the Hilbert 
transform at the continuous level (15). The following lemma shown by BHL [7] 
summarizes some of these properties. 

Lemma 2. Let f be such that fO = fN/2 = 0, then 

(i) (Hhf)k = -i sgn(k)fk, 

(ii) Hh(Hh fi) = z-fih 

(iii) ~~~~Hh (Sh fi) fr h d(-j 
7r ~ (ai - j)2 (j - i) odd 

(iv) Sh (Hh fi ) = Hh (Sh fi) - 

To estimate the third term in (40), we extract the singular parts of the kernel as 
follows, 

(z(0l)Z(p) 2 =Z2 (a) (aZ _)2 +a - + ()' 
where p(.) and q(., ) are smooth functions. Again, by consistency, we also have 
that 

( (i(a)-(a)) (1 + O(hm+2)) Y(aj) 
(Zp(a) - Zp(aj))2 - (Z(ai) - Z(aj))2 

Combining the last two expressions and using part (iii) of Lemma 2, and Lemma 1, 
we obtain 

2 7ri 5 f (T(xaj W(a i) (ZP (a.. )zP (a j) )2 2 
(53) (j-i) odd h h 

- 

H D(?fH) 
Hh DhA P a (aiP + A+2(iA 
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We substitute now our estimate (47) into the term containing z, 

-_ _ _ _ _ _ -y(a j) H2 
-2(())Hh Dhj= Z--,( _())Hh(z,0)P + A-2 (&i i i) + GI(hm+) 2iz2 (a,) 2z2 (a,)h(Q)+A(&,) 

Now, (zQO)P = zQ(aOi)OP + GP Oj, where GP is the commutator of the filtering, that 
is 

(54) GphQ(i) (f (a)0c)P - f (?liW? 

for smooth functions f(.). Using Lemma 1, we get 

) -22(a) Hh Dhi - - () Hh Op Hh GP 
(55) ~~2iz2 (a,) 2zQ,(ai) h 2z2 (a,) 

h 

+ A-2(6&i, Oi ) + O(hm+2). 

The term GP Ij is not smooth enough to be included in A-2(&i, 0i). More precisely, 
we have the next result whose proof can be found in [15]. 

Lemma 3. 

GP(0i) = hAo(ob). 

The specific form of the operator GP will become important in the energy esti- 
mates involving the evolution equation for 0. 

To complete the estimates for W, we need to take care of its nonlinear part. This 
is the content of the following lemma adapted from [7]. The details of the proof are 
given in [15]. 

Lemma 4. For t < T* the nonlinear part of W is of the form 

WNL = A - 

Now collect all the estimates for Wi. Combining (48), (52), (53), (55), and 
Lemma 4 we obtain our final estimate for W. 

~47 
(Ta~)Hh(~j) - Hy(afj))HhG O+E(j 

(56) 2izQ (a) 2zQ)(a) VHh + f(ai) Hh Gh Oi + E(0i) 

+ A-2(&i, Ci, Vi) + O(hm?2), 

where we have defined 

(57) E(i) =f('ai) Inth(zQOip + g(ai) Hh Inth(zO)c , 

which comes from the last two terms in (53). Hereafter, by E(0) we mean an 
operator of the form given by the last expression or the real (imaginary) part of it; 
only the structure of the operator E will be relevant in the final energy estimates. 

We can proceed now to estimate the variations of tangential and normal velocities 
UT and UN. We have that 

UTT Re{e'0P Wi -ei (ei)Wh(ai) 

= Re{eio (i)Wi + Whh(ai)(e'0 )i + Wi(e'O )j , 
where (e0P)i - eo It is clear that (44) remains valid also for OP. 
Therefore 

(58) (eiop)' = ieio(aj)0p + A_3(Oi). 
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Moreover, using the estimate (56), we can obtain the following bound for W, 

1VWI112 < C(I&I112 + 1101112 + 1Y1112). 

Thus, IIWl1co < Ch3, and as a result 

lWe 'I2' IIWlleOll(ei < It Ch 3 11(e'o )'I2 

From (58), we conclude that Wi(e 0P) =A-3(0i), and since Wh = W + O(hm+2), 
it follows that 

T=Re{eiOP(eiV)Wi} - Im{ei0(ei)W(aji)}5P + A-3(Qi) 

(1 + O(hm+3))Re{ ai) Tii + UN(fi)0~P + A3(0i). 

Substitute now our estimate (56) for W into this last equation to finally get, 

( )-2 (aj) Hh i + UN(ai)Si + f(ai) Hh GP 0i + E(0i) 

+ A-2(i, i, Vi) + O(hm+2). 

The variation of the normal component of the velocity is estimated similarly. We 
obtain 

(60) Ui = 2~ Hh y - (c) + f (ei) Hh GP oj + (i 
(60) 2h 

+ A-2(&i, 0 Vi) + O(hm+2). 

Recall that f (-) denotes different smooth functions whose forms we need not specify. 
Finally, the variation of the added tangential velocity UA has to be estimated; 

UiA=-UT + Inth(U (*) Dh O)i + Inth(Dh Q( )U i) 

-Inth (R(.))i (UN (-) Dh O)h - Inth(R(*))i(Dh 0()N )U + A 'NL 

where the nonlinear part of the variation is given by 

NL = Inth(CN Dh O)i - Inth(R(.))i(U Dh O)h. 

Note that (60) and our definition of T* imply that II&U7 I < Ch3. Therefore 

(61) IUX&'Dh01112 < 11&|U1'Ioh 11101112 < Ch21101112, 

from which it follows that AI NL = A-2(6.). Now, from Parseval's identity, 

(UN(.) Dh 0)h =-KDh UN (.))h A-m(0i) 

and similarly we conclude that 

(Dh O)UN)h -A-m(&ij ,ij ). 

Thus, an estimate for UM' can be written in the following form 

LJt"=-U27 + B(j, 6i, i,j) + A-m((i, Ci, ''i) 

where 

B(&-i, i, 1i) Inth (UN(.) Dh O)i + Inth (0a (*)UN)i. 

We would like to "integrate by parts" to obtain the leading order terms of B. At 
the continuous level, integration by parts follows from the product rule (fg), = 
fg, + fcg. However, due to aliasing, Sh(fg)i + fi Sh gi + gi Sh fi. Of course, we do 
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not need this to be satisfied exactly but only that the error be a lower order term. 
This is the content of the following lemma [7]. 

Lemma 5. Let f(.) E C3 and 0Ez 12, then 

(62) Dh(f(.)q$)i = f(ai) Dh q5i + fo(ei) q5 + hAo(qi), 

where 

Ok = q(kh)q5k ; q(x) +(xp(x)). 

Hence, 

Inth(UN () Dh O)i = Inth(Dh(UN(.)I)), ? Jnth(Uf (.) q + hA(Oi))i 

= (UN(i)i)P + A-1(Oi)= UN(aoi)Op ? A1(Oi), 

where we have used Lemma 3 for the last equality. Now, the estimate (60) for UN 
in the other term of B, gives us 

B (-i i Vi -'J= UN(ai) P + A-I(&i, Oi Vi). 

Therefore, 

(63) _T =U-U + aU(ai) +A-(&i,i,ViY) 

5.2. Evolution Equations for the Errors. We use now our estimates for the 
velocity variations and the Consistency Lemma to find evolution equations for the 
errors. The most technical part is the equation for . In addition to estimating 
numerous linear and nonlinear terms, we also have to prove the solvability of a 
discrete integral equation for dy/dt. Of course, this would not be necessary if the 
Atwood number A were equal to zero. 

It is easy to obtain an evolution equation for &. Using the Consistency Lemma 
we have, 

-= -R(a-i)KShOU -Sh ()U (-))h + O(hm?2) 
dt 

-R(ali)KSh UN (.) -Sh 0()UN - Sh UN )h + O(hm+2). 

The nonlinear term can be bound just as in (61). It follows that 

(64) dt= A-2 (Oi i 'i ) + O(hm?2) 

As we mentioned before, equation (37) for 0 can be written in terms of a, 0 and 
the velocity variations UN, UT and (A. By direct computation, and estimating 
the nonlinear terms just as we did for UN, we get (see [15] for details) 

dt - 1 Sh U aN + U(ai) + UA(ai) Dh O0(ai)UN(ai) 

(65) dt au(a%) 
Shi+ 

ojai) Dhu (a%) 

+ A-2(0i, vi) Vi) + O(hm+l), 

where we have also used (63). We estimate Sh &iN from (60); 

S1h UN = Ah - U (ai) Dh i - U (ai)0i + Sh E(06) 
(66) 2 

+Sh Gj 0%i+ Sh f (a-) Hh~ GP~ 0% + A_1 (0%, &j -) + O(hm?l), 
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where we have combined (54) and Lemma 5 in applying the operator Sh to _UTOP, 
and have defined Ah- Hh Dh. Here is where the use of a makes a difference; the 
operator Ah is acting on a only, and the other terms in a' are A-1, just what we need 
for the balance in the energy estimates below. Finally, substituting (66) into (65) 
we get 

dO6 1 uA (ai) _ 
dt = ( )Ah^Y +4 r( Dh 61z + f (ai)6p + g (a,,) dt 2- a aai 

(67) 2(a1 u(1 
(67) + ()ShE(Oi)+()Sh Gha j) (a Si) f(ai) HhGP Oi 

+ A-,(Oi, 6il)Vi + O(hm+l). 

Obtaining an evolution equation for y requires estimating many terms. However, 
only a few of these terms contribute to the leading order behavior. More precisely, 
we will show that 

dti = S ) Dh Dh + 2 Ah p + f (ai) Dh 'i dt - (a-) a(a-) .2u (a) 

+ Ao(&-,O 6 V) + 0(hm). 

First, we obtain an evolution equation for -. In view of the Consistency Lemma 
and (27), 

(68) Qi + Fi + 0(hm), 
dt 

where 

-S Dh (-Dh 0 -SDh( Dh O(ai)) + Dh(Ui '5'i) - Dh(Uh (ai) (ai)) 

-2A[ 8Dh ai + ggi sin i- UARe {eioi Sh Wi}] 

+ 2A[8 Dh 7(ai) + g9 (a%) sin 0 (ai) - UhA(ai) Re{eo('i ) Sh Wh(ai)}], 

and 

Fi-=_Fi - Fh(ai)), 

where Fi is given by (28) and Fh (ai) is the corresponding expression obtained by 
substituting the exact solution into (28). While Qi contains many terms, they can 
be estimated with the same procedure as in the evolution equation for 0. The 
details of the estimates are given in Chapter 3 of [15]. We find that 

1 12 ~ ~(iUA() 
i = SDh (-Dh0i) ?+ 2Y(ai) Ah 6i -A7(a (i) Ah Oi 

(69) o*i2 

+ [UA(ai) - A((ai)] Dh + Ao(&i,0 ,i, Vi) 

Recall that Ah= Hh Dh. The estimate of Fi is different and requires one important 
technical result: the solvability of a discrete integral equation. We start first by 
splitting Pi into linear and nonlinear parts in the variations, 

-i = -FL +NL 
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where E7L contains linear terms in the variations. It is not difficult, although very 
lengthy to show [15], that ANL =A(&i, ( ii), and 

F L =-2ARe dl a~)2h} 
2wri Z zP(a.) -zP(a -) 

(70) (j-i) odd h 

+ 2Re z(ai) Sd;P(ai d_'j + 
2AReI2waj) dt dt 2 o&l61-i 

(jr - ) d (Zh(ai) - z'(a .))2 ( (S-Z~~~) odd (h (?i-h 3C h}+A 5 i7a 

The leading order part of Pi is contained in the second term of the right hand side 
of (70). This term can be estimated just as we did to get (53) for one of the terms 
in Wi. Thus, 

_ f ______ ~~~ ~~~ ~ ~~~~dt dt 2 
F. 2ARe z() P(aj) - d h 

2wri ' z(a,i) - z a) ( 71 ) ( (j-i) odd (Zh h 3 

~2ARe Zt d dt 24-h+ AO(dz) 2 2A izo (a ) i (a -)2 aj dt 

We now need an estimate for ddti. From (29), (64), and (67) it follows that 
__ dO~~~~~d 

dti Inth[iz( d- e?0() dt Ao( A& )] + 0(hm+l) dt ~~dt dt 

=Inth[i2f( Ah ^ + i-a Dh + A&Ia 6)]i + 0(hm ) 

and "integrating by parts" on y and 0 we get 

(72) = i( 2Hh a)p ?i(UA Oi)p + Inth[Ao(&,, ' ')]i + 0(hm+?). 
dt 2u a 

Substituting (72) into (71) and using Lemma 2 we find that 

Fz =- A (i) Dh Vi + A(i)UA(ai) Ah 0i + A0(&i, Oi, i) + O(hm). 

Therefore, we can conclude that 

-i Kh dty - 2 A (a-) Dh +A(a)UA (a-) Ah Oi 
(73) dt 2 

+ Ao(&il i, Vi) + 0(hm) 

where 

d__ zo, (ai) dThyj 

() Kh ~~ ~~dt { 2wri S z (ai) - z?(aj)2 
( ( - i) odd h h i 

Substitute now the estimates (69) and (73) for Qi and Fi into (68) to obtain 

(75) (I + Kh) dti P(0%,' 5) + Ao(&iv + 0(hm), 

where 

P(O,'i5) = SDh( DhOi) + l2 (a-)Ah 0 +f(ao)DhYi a (a.,)2 
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Note that (75) is a discrete version of a Fredholm integral equation of second kind. 
The following result shows that the operator I + Kh has a bounded inverse in 12 [7, 
15]. 

Lemma 6. Assume that z(.; t) c C3 and za, + 0. Then there exist constants ho > 0 
and C > 0 such that for all h satisfying 0 < h < ho, 

11 (I + Kh)-11ll2 < C. 

We adapt now the argument of BHL [7], to show that Kh dg'd is actually a lower 
order term. Indeed, 

Kh dt = Kh(I + Kh)- YP0,V)+A(i i Y)+?h) 
Kh dt +LKh)-1Kh P(C ji) + Ao(&i, i, tjY) + O(hm), 

where we have used commutability of the operators, that is 

Kh(I +Kh)-1 = (I+Kh)-1 Kh 

and the fact that Kh and (I+ Kh)-1 are bounded in 12. Moreover, note that 

Khq5j =Re 2h +Rh(qi)+A-m(qj) 
[ (i-i) odd j 

- Rh(q5) + A-m(?bi), 

where Rh is a discrete 'smoothing' operator of the type defined in (50). Here is 
a place where the right combination of filtering is crucial. By Lemma 1 we know 
that if Fourier smoothing is applied to eliminate aliasing errors, then Rh A_2 
Therefore, 

Rh(Dh Dh Oi) = A-2(Sh DhO6i) = A) 
u(ai) u(ai) 

Rh (Ah Oi) = A- 2(Ah 0i) = A) 

Rh(Dh) =A-( 

which shows that 

Kh d = (&i, Oi, 
dt 

Therefore our previous estimate (75) becomes 

d _ 1 . 12 

(76) u(a~~) d-SDh DhO6i + -~(ai) AhO6p + f (ai) Dh'Yi 
(76) dt = h a(a 2Dai 2 ()hi+()Da 

+ Ao(&jj, 6 ,Vi) + 0(hm). 

However, we need an evolution equation for j. Recall that - y/u, thus 

da 1 d (i 1 d-yi _ (Y du' 

dt a (ati) dt ta Ji dt t52 dt J 
= 1 dt') 

a (ai) dt 
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where we have used (76). Thus dividing equation (76) by a(ai) we arrive at 

dti = ( Dh Dh Oi + AP( h) hPf+ f(ai) Dh'Y 

+ Ao(&j, i, i,j) + 0(hm). 

This completes our system of evolution equations for the errors. We have shown 
that, for t < T*, 

(77) dtij A-2 (&i Si Vii i) + 0(hm+2) (7) dt 

(78) dti = Ah 1+ f (i) Dh 6i + (6i) + A 1 (6i v Vi) + O(htn+ ) dt -a (aA(o,iI) ?(~~ 

d_ S 1 HS y2(ai)N 
(79) dt = (a ) A(a) 2Su(ai)) Oi + f(a) Dh Vi 

+ Ao(&i,O i, Vi) + 0(hm), 

where Ah = Hh Dh, and e(Oj) is of the form 

(80) (9 (6i) = cl(aj) P+ C2(a?i ) + C3(ai) Sh GP (Oj) 

+ C4(ai) Sh f (ai) Hh Gh (Oj) + C5(ai) Sh E(Oi) 

and all the c-'s are smooth functions. Recall that E(Oi), given by (57) comes from 
the transformation linking z to a and 0 and that GP (54) is the commutator of the 
filtering. Note also that in (79), we have combined the two leading order terms in 
0 into a single term that makes more transparent the stabilizing effect of surface 
tension. 

5.3. Energy Estimates. To illustrate the idea, let us consider only the leading 
order terms in the evolution equations for Oi and aI. 

d6i 1 
dt 2a (a ) Ah j+-* 

d _ _ S1 
dti - S Ah (Hh Sh-a(ai)) 0? + dt a(aui) a(aci) 

where a (ai) = y2 (a-)/2Sor(a(). Let us denote the usual discrete inner product as 
follows 

N/2 

(X)Oflh-h 
= E Sjj. 

j=-N/2+1 

Suppose now that we take the inner product of the equation for yi and (u/2S)-'Y. 
We obtain 

(y dAh( (Hh Sh a)P)+. + 

where we have used that Ah= Hh Dh is a symmetric operator. On the other hand, 
if we take the inner product of the equation for 0 and (Hh Sh -a)OP, we get 

dO(\ 1 1 t 
((Hh Sh -a)OP~ , j - - Ah, 7I Hh Sh-a)O) 
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Thus, the leading order terms of these two last equations would balance each other; 
just as we need for stability. However, Hh Sh -a(a) is not a positive operator 
but instead, its action depends on whether the modes are greater or less than 

JJaJl 0. In other words, surface tension divides the spectrum in two bands, with its 
effect becoming dominant for those modes greater than llall ,. Therefore, a careful 
distinction of the two bands of modes must be made in the energy estimates. To 
this end, we follow a technique developed by BHL to study the growth rates for 
the linear motion of a two-fluid interface at the continuous level [8]. We adapt this 
technique to the discrete case corresponding to our numerical method. 

Let PM be the following projection operator 

(p~fUk if kl > M, 
(PMU)k-lo if=k|?M, 

where M = 2(fla0 + 1). Note that the definition of the projection operator implies 
that IIPMU1112 < IlUli12. With this in mind, let us take the inner product of the whole 
evolution equation for a (79) with (u/2S)-. We get 

2S ( ' -/ dt)h 2 (ixa~ ?(HhSh -a)0P) + (fe, 1 
/zf-Dh' 

+ my, Ao(u,O) + O(hm)) 2S h 

Clearly for the last term in the right hand side, we have that 

(81) 

1 a ( Ao(,O ,% -) + O(hm)) < C IKI (11-1112 + 1lH1 &2 + 1161112 + O(hm)). 

On the other hand, 

(f^l, =h -)h =-(Dh(fD) ' -(f Dh - + h)hA(7a?)( )h 

and thus 

(82) |(, h | (fha? + hA0(7) ) ? CI=2h 
Now, we separate the modes for the leading order term; 

-2 (-Ah 7 (Hh Sh-a)P )Ah PMI4 7 (Hh Sh-a)PM 6P) 

- 2 (-Ah(I-PM),Y (Hh Sh -a)PMOP) 

-2(Ah 7 I (Hh Sh -a) (I -PM)0 ) 

Fortunately, the terms involving (I - PM) are of low order. This is the content 
of the following lemma. 

Lemma 7. Let f(.) and g(.) c C2[-X, w] and X, f C 12, then 

(i) l(f Ah(I - PM)O, (Hh Sh -a)PM1.)hl < C1112 1f211112, 

(ii) l(f Ah q , (Hh Sh -a)(I - PM)1 )hl < C||0||l2H1|PH|l2, 

(iii) |(f Dh(I - PM)O , (Hh Sli -a)4)hl < C11011121f||l12, 

(iv) l(f Dh 0, (Hh Sh-a)(I-PM)V))hl < C114111211V)1112. 
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Therefore, using parts (i) and (ii) of this result, and estimates (81) and (82), we 
conclude that 

(83) Sdt( ' )? (C Ah PMV I (Hh Sh-a)PMOP) 

+ C (l 112 + HUHiI2 + 116112 + O(hm)Hl5Hl2) 

It is now clear that to balance the leading order term of this estimate, we need to 
take the inner product of (78) and (Hh Sh -a)PAjvrP. Note that (Hh Sh -a)PM is a 
positive operator; we will deal with the low modes of 0 later on. We have 

(84) 

((Hh Sh-a)PMO P 
1 jAh 7 (Hh Sh-a)PM0P) 

+ (f DhK I (Hh Sh-a)PMP)h 

+ (e(6), (Hh Sh -a)PMP) h 

+ (A1 (&,, ) + O(hm+) , (Hh Sh-a)PAJO) hv 

where 69(O) is of the form defined in (80). Let us start with the left hand side of 
this equation, 

dO S-)PJVIO d -P~~0 ((HhSh-a)PMO Jh ((Hh h ) 'dt 'dt h 

+ ((HhSh-a)PM6, (I-PM) d) 

However, we also have the following orthogonality property: 

dO 
Ah PMO, (I PM) - ) 0- 

dt 

Thus we get, 

(85) S (h aP a)PM( P) aPm O(P Ih 1 -+Pm0 MO)+1 

where 

J?) H ChlShll2 (-HS aP12 + 1|O|l2 + fllR2 + hm). 
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We turn our attention now to the right hand side of (84). For the first term, we 
have 

2 (-Ah -I (Hh Sh-a)PMOP) Ah PM7, (Hh Sh -a)PMO) 

+ 2 (-Ah(I - PM)7, (Hh Sh -a)PMOP) 2 
~~~~~~~~~~Ih 

and in view of Lemma 7, 

2 (-Ah Y (Hh Sh-a)PMOP) ? 2 (-Ah PM', (Hh Sh -a)PMO) 

+ CH6111211-1112. 

Similarly, separating low and high modes, we have that 

(f Dh K i (HhSh-a)PM6P) < (f Dh PMI, (HhSh-a)PM )h +?C11612; 

but for any 12 function q5, 

(f Dh q, Ah )h -(Hh(f Dh 0) I Dh q)h 

- (HhDh k, fDh )h + (A-1(4), Dh Oh 

Thus, 

(86) (f Dh q, Ah Oh =)(Ao(q) I 0)h 

On the other hand, we have already shown that I(fq, Dh 0)hj C 2lq5fl2 (see (82)). 
Therefore, 

(87) (f Dh PMO, (Hh Sh -a)PMOP) ? C H1O2- 

The following result will help us estimate the term containing e(O) in (84), (see 
[15]). 

Lemma 8. Let f ) ( C2, then 

(ii) | (f , Hh Shlb)hl < CIIIIHI/2IIIH'1/2 

(ii) (f Hh 0, HhSh4')hl < CIIIIH 1/2H 1/2H 

(iii) (fSShgGPHh, HhSh1)h ? Cq5fl{1/2 fl4H1/2. 

(iv) 0 (f Sh g GhHh 0 , Hh ShV)h | Cl}H1/2 111}H 1/2 

where HH1/2 ((Ah +I), O)h and Ah= Hh Dh. 
h 

Note that all the first entries in the discrete inner products, i.e., fq0, f Hh q, 
f Sh GP q, etc., are of order q which makes clear why this result is true. 

For the e term in (84), we have 

E((0) I (Hh Sh -a)PAIxiP) H C|I1/2 + (f Sh E() I (Hh Sh -a)PMiP) h 

Recall that the operator E(O) has the following general form, 

E(0) = f (ai) Inth(Z,0O)p + g(ai) Hh Inth(zao)p 
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Also note that 

Sh (f(ai) Inth(z9)p) = Dh (f(aoi) Inth(ZJ)i) + Sh Gl Jnth(Z6)i 

= f (a.)O?f(ol (a)O + Sh G Oi + A-(i), 

where Oi = Inth(zoO)j, and similarly 

Sh (g(aj) Hh Inth(z0o),) =9(aj) Hh O + go(aj) Hh 0j + Sh GP Hh i + A_1(0i). 

Moreover, 612 1/.2 <? C1161121/2. Therefore, using Lemma 8, we get 

| (6() 1 (Hh Sh -a) Pm ) 
P < C 11 611/2 1 

Finally, we clearly have 

[ A-1(0, (6)r + O(hm+?) , (Hh Sh -a)PM )hp 

< CHOS6112 (11611l2 + IO&1|12 + 1|a|112 + hm) 

Therefore, we conclude that 

(88) 

2+ ((Hh Sh-a)PMP , PAl), ? 2 (?Ah P1VIt (Hh Sh-a)PMOP) 

+ C||H1/2 (|HHZ/2 + IIO||12 + 11'yl2 + hm) 

Now taking the inner product of (77) and &, it follows immediately that 

(89) 2d Ct HO1112 11 (61l2 +1 H&H112 + 1l2 + hm?2) 2 dt 
We need to consider the contribution of the low modes to complete the energy 
estimates. Taking the inner product of the 0-equation (78) and (I - PM)0, we 
obtain 

((I Pi, 0 S) 1(1Ah. (I - PA) 

+ (fDh6, (I-PM)) + (e(A), (I-PM)O)h 

+ (A_l(&,,-)+O(hm+1) (I-P' ) . 

For the left hand side of this expression, we note that 

((I- PM)0 -J h= (I-PM)O, d(I- PM)O) II( P2) 121 
dtdth 2d 

where we have used the orthogonality relation 

dO 
(I-PM)O,PM-- =0. ( ~~~~dt 

In view of Lemma 7, and that e(Oi) = Ao(O.), we conclude that 

(90) 1)-fl(I-PM)O112 < C106l12 (1161112 + Iflfl12 + 1H12 + hm+l) 
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We put together now the two bands of modes by noting that 

m ~~~~~2 
((Hh Sh-a)PMO , PMO)h+ 2 (I-PM)O 

12 

M .2 

= (Ah PMS, PM) h -(aPMO I PM, h+ 2 (I M) 12 

> (Ah PMO, PM) h- HaHOPMOH 12 + -PM)6 2 

= 2wr E p(kh) [Ikl - lallj] Ok1 + 2Lr 2 E OkK 

jkj>M Ikl<M 
kEI kEI 

where I = {-N/2 + 1,... , N/2}. Recall that M = 2(jjajj0 + 1). Therefore, 

lkl > flafl0z for lkl > M, 
2 

and as a result, 

((Hh Sh-a)PMP , PM) + 2 (I-PM)O2 
h 2~~~~~~~1 

> 2w[2 E p(kh)jkH,Ok2 + i S OkH 

jkj>M Jkl<M 
kEl kEl 

=-2 [ S p(kh)jkHOk 2?M S jOk 
Ikl>M Ikl<M 

kEI kEI 

+ 2[ E p(kh)jk|3k|?M Z |k| ] H1/2 

Ik>M Ikl<M 
kEI keI 

We now add the estimates (83), (88), (89), and M/2 times the low-mode esti- 
mate (90). As noted before, the leading order terms of (83) and (88) cancel each 
other, and we are left with the following inequality, 

4S}a d Y '12 + -2 dt((Hh Sh-a)PMOP PMO) 

M-d11(1 _ pM)O112 + 2 dt 

? C (IISI + V72Yf12 + flUW12) + c (11611H1/2 + fl'yfl2 + flUfl12) hm. 

Integrating in time, we find that 

y2(t) < y2(0) +j K (Y2(s) + yo(s) hm) ds, 

where 

y2(t) = 6I/2 + 11112 + 1111H2. 

Applying Gronwall's inequality, we conclude that 

yo(t) < C(T)hm for t < T. 

Therefore, 
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On the other hand from the evolution equation (79) for , we have that for t < T*, 

;dt 12< h2 u1f|l12 + 1lO1112 + K 11l2) 
< C(T)hm3 

Since m > 4, we get that for small h, 

11&1112 v 11171112 < C(T)h5 lh7/ 

and 

1101112 < B(T)h4 < 2h7/2 and d21 < 2h3/2. 
- ~~~2 dt 12 2 

From the definition (42) of T*, it follows that 

(92) T = T*, 

which shows that the estimates (91) are valid for the entire interval 0 < t < T. 
This completes the proof of Theorem 1 for the convergence of our method. 

6. TIME DISCRETE ANALYSIS FOR A SIMPLE MODEL 

The study of the fully discrete scheme for our two-fluid method is awfully tech- 
nical. Even a frozen coefficient analysis for the vortex sheet case (A = 0) is com- 
plicated. 

To illustrate how the high order stiffness is removed and what the linear time 
step constraint is to achieve numerical stability, we present here a complete stability 
analysis for the simplest case of Hele-Shaw interface (fluids of same viscosity and 
density). 

The interface position is again determined by the same evolution equations for 
o- and 0, but now -y is a dependent variable. For the simplest case, we have [24] 

(93) 0=S( 00. 0- 

Using the small scale decomposition in the evolution equation for 0 and (93), we 
now consider the following Crank-Nicholson discretization in time, 

on+ 1 - on-I cs 
(94) i -i = Hh Dh 

(0i+ I+ 
? 

0V) + Pi, 

where Pi is the right hand side of (26) minus the first term in the right hand side 
of (94). We are also taking R _ 1, that is, an equal arclength frame. To compute 
the velocity, -y is determined from yin = S Dh Oi,/_n . As we mentioned before, the 
equation for o- is not stiff. We discretize it with a second order Adams-Bashforth 
scheme, 

n+1 n _ 1t(3 nUN,n 
I 

n-1UN)n-1 (95) o-t(--(ShO U 'h - ~(Sh l n)h). 2 2 
Assuming a relation of the form /\t < Ch (we aim to determine more precisely 

what the constant C should be), we would have an overall accuracy of 0(h2). This 
accuracy is not high enough to bound the nonlinear terms as we did in the time 
continuous analysis. Nevertheless, an argument due to Strang [41] can be used to 
overcome this difficulty. The idea is to construct functions 

0(a, t) = 0(al, t) + (t)202 (a,t), 

&(a, t) = u(a, t) + (At)20f2(aC, t), 
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which satisfy the scheme with a truncation error of order O((/\t)4 + hm), that is 
0(h4). This accuracy is just enough to bound the nonlinear terms. Hence, the 
same estimates as in the time continuous case can be applied to this fully discrete 
situation to obtain the following equations for the errors, 

~n?l1- n-l sUACe (96) 2fti i - - Hh Dh3(0in+l + Sn-1) + ?n) Dh Sn 

+ f (ai, tn)6Jn + AO(On) + O((A\t)2 + hm), 
1~~~~~~~~~ 

(97) &l _n1 = \t(3Tn Tn-l) + \t. o((A\t)2?hm), 
2 

where 

(98) ITkl < Ck(fl kfl12 + 1-k,1) 

and tn - nAt. Multiply equation (97) by 6-n+1 + &-n and sum in time to get 

(7n+1)2 - (8&0)2 = --\tEZtk(&k+l +?ak) + ltZkl(&k+l +?&k) 

k=O k=O 
n 

+ \t E O((\t)2 + hm) (6k+?l + &k). 
k=O 

Without loss of generality, we shall assume that the error in the first two steps is 

zero. Thus, for /\t small and using (98) we obtain 

n n 
(99) (n+?1)2 < CA\t (flOkfl12 + (6tk)2) + CA\t((z\t)2 + 1h ) S . 

k=1 k=1 

Now multiply equation (96) by 2At* h(On+l + n-l), and sum in space and time to 

obtain 

n 

+-S/\t E 5k- 1k+l + Sk-1, f ( Ak-l) 
2 Lo- 3(tk) h 

k=1 

n 

+ 2\t (E k k1 + Sk-1 Ak(Uk) + 0((ht)2 + hm)) 

= (I) ? (II) ? (III) + (IV). 

Now, note that (q, Hh Dh3 q) < 0. Therefore (I) < 0. For the second term, 

we have 

k=10=tk 

( 2/\t k(t ) (k I , U (, tk) DhSk)h 

k=1 
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but 

k 
2/\t tkDht ojtk) (-, U t) Dh oki 

k10tk) h n 

=-2/\t I:( ) (f 
k UA (-tk-1) Dh )k-h 

k=1 
+ /\t sE 0(t (Ao(6k1), 6kh 

where we have summed by parts and shifted UA( ,tk) to UA(.,tkl1). Thus, the 
leading order terms of (II) telescope; we get 

1 n. 
(II) = 2A\t 0(tn) (6n+1I)UA( tn) Dh n) h+ At E (AO (6k1), takh 

Noting that 

2/\t(0 - (tn I UA(.,tn) Dh hn) < AnX(lOS fl2 ? 110fl12) 

where we have bounded fl Dh0l112 by 1lOlSl2/h and absorbed the factor 1/h in the 
following definition of An, 

A zt UA (tn) 
(100) An = -t,(,)t 

we have that 
n 

(II) < An(116n+l1112 + jjnl12) + Cz\tZ(Okflj2 +?1k-1112) 
k=1 

Now, for the third term we have 
n 

|(III)| < CAtZ( 1?k+ll112 + 116k-1112 + (&k)2) 
k=1 

The fourth term is easily estimated; 
n 

|(IV)| < CAtZ(flOk+ll112 + ?6k112 + 116k-1112 
k=1 

n 
+ CAt((z\t)2 ? htm) E(n6k+ln2 + lflk-1112 

k=1 

Collecting our estimates and assuming that An < 1, we can conclude that 

(101) c2 < C\t ?2 + ((At)2 + hm)ck 

where we have defined 

(102) E On+l _ 6n+ 11F2 + 1On f1 2 + (&n)2 

which implies that 

(103) flOn 1112 
f1u n < ? C(T) ((/\t)2 + hm). 
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Therefore the stability constraint is 

UA (tn)1 (104) At < h. (tn) h 

Remark. From (59) and (63) we get that the leading order behavior of UA is 

UA - (i) Hh Oi, 2 
and since y is linked to the derivative of the curvature (in this case =S Io/), 
the time step has to be reduced significantly whenever singular regions or high 
curvatures are encountered. This was observed in our numerics. 

7. NUMERICAL EXAMPLES 

We present in this section some numerical simulations of two fluid interfaces with 
surface tension, using the scheme studied in this paper. The examples illustrate 
the nonlinear stability of our discretization and robustness of our method. 

The time integration is performed following the ideas of HLS to remove the high 
order stiffness introduced by surface tension; we rewrite the spectral discretization 
in space of the evolution equations for 0 and -y, extracting the high mode leading 
order terms. The resulting system of ODEs can be written as 

(105) dS i ,S1 (-HhP-Y Pi 

(106) dti -SDh -Dh Oi + Qi, 

where Pi is the right hand side of (26) minus the first term in the right hand side 
of (105) and Qi is the right hand side of (27) without the surface tension term. Now 
we use a fourth order accurate implicit-explicit scheme studied by Ascher, Ruuth, 
and Wetton [1]. The scheme is suitable for time-dependent PDEs whose spatial 
derivatives have been discretized by central finite differences or by some spectral 
method, giving rise to a large system of ODEs of the form 

(107) dt = f (U) + vg(u), dt 
where g is a linear operator containing derivatives of high order, f is a collection 
of nonlinear terms which we prefer not to integrate implicitly, and v is a positive 
parameter. Typically f contains only first order derivatives, thus the main stiffness 
is introduced by the linear operator g. The implicit-explicit time integration scheme 
is given by 

125 +1 Un Un-I n-2 I n-3 

(108) A\t 12 3 4 
= 4f (Un) - 6f (Un-1) + 4f (Un-2) _ f (un-3) + vg(U n+1) 

Applying this scheme to (105)-(106), we obtain the following system of equations 

(109) 0~?1 - 
At 12 1 I1H y ' (109) S -225n Si-, n+ Hh -Yi )=Ai 

2110) &i125 l 
(110) _,n?1 12t Dh 1D? 

n1 B 
25 U<fl2 
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where Ai and Bi depend only on the previous time steps. In particular, when the 
parametrization is selected with R_ 1, the previous system can be inverted easily 
in Fourier space. This is the frame we use in all our computations presented here. 

On the other hand the evolution equation for o- does not contribute to the high 
order stiffness. Therefore, an explicit method can be used to update o- in time. 
In our implementation, we employ the following fourth order Adams-Bashforth 
scheme, 

(111)~ o- 0z+1= z 24 (55Fin -59Fjn-1 + 37Fin- i F 

where Fin is the right hand side of (25) computed at time nA\t. 
All our computations are for 1-periodic interfaces. The simulations in [0,1] are 

achieved by a simple scaling of the 2ir-periodic case. All the calculations were 
performed with double precision on a SparclO workstation. 

A useful check for the accuracy of the numerics is the monitoring of the energy. 
For a two-fluid interface, the total perturbation energy given by 

ET = S( o/ (a' )da - 1) + 1 j 7(a) (a)da 
(112) 

2 

+ A [ +(a)0a(a)da + g j 2(a)X(a)g] 

where X and / are the velocity potential and stream function respectively, that is, 

(113) y()?'i)(a)== 2 j 'y(&)log[sin7r(z(a) -z(a')]da' 

is conserved in time. ET can be computed with spectral accuracy [4]. In our 
computations, we monitor the number of digits in the fractional change of energy, 
that is, 

Number of Digits -log10 ET(to) 

where ET(t) is the total energy at time t. 

7.1. An Interfacial Standing Wave. This example illustrates the stability of 
our method. The situation is nearly that of an air-water interface. We take the 
Atwood number A = 0.9, the surface tension coefficient S = 0.01, the gravity 
constant g = 1 and the following initial position and vortex sheet strength for the 
interface: 

x(a, 0) = a + 0.01 sin(27ra), 

y(a,O) = -0.01 sin(27ra), 
-y(a, 0) = 0.01 sin(27ra). 

This corresponds to a small perturbation about the equilibrium state. The inter- 
face behaves like a standing wave, completing one full oscillation at about t = 2.4. 
The position of the interface, as it evolves in time, is plotted in Figure 1. In this 
computation, N = 128 and \t = 0.0025. Figure 2(a) shows the spectrum of y 
versus the wavenumber k, plotted at t = 0, 1.2, 2.4,... , 12. The wave performs 
about 5 complete oscillations by the time t = 12, that is, after 4800 time steps. 
The spectra clearly shows that the numerical solution is stable and smooth. In Fig- 
ure 2(b), we plot the 12 norm of the difference in the position variable y between the 
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0.01 
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FIGURE 1. A standing wave for time t = 0,0.5,1.0,2.4. A = 0.9, 
S= 0.01 and g= 1.N = 128 and At = 0.0025. 
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k 

FIGURE 2. Standing Wave: (a) Spectrum of y at t= 

1.2,2.4, ... , 12; (b) 12 -norm of the difference in y between the nu- 
merical solutions for N = 128 and N = 256 with At = 0.0025. 

numerical solutions obtained with N = 128 and N 256. Here At = 0.0025. For 
this simple case in which the amplitude of the wave is small and the interface profile 
remains smooth, few points are needed to obtain high resolution. Figure 3 shows 
the number of digits in the fractional change of energy against time, for N = 128 
and At = 0.0025. 
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FIGURE 3. Standing Wave: Numbers of digits in the fractional 
change of the total energy versus time. 

7.2. Unstably Stratified Two-Density Interfacial Flow. One of the classical 
examples of hydrodynamic instability occurs when a layer of heavy fluid sits on top 
of a lighter fluid, or equivalently when the interface is accelerated toward the heavy 
fluid. This is called Raleigh-Taylor Instability [20]. 

We can simulate this unstably stratified two-density interfacial flow by consid- 
ering negative values of the product of the Atwood number and the gravity accel- 
eriation, that is, Ag < 0, and taking the following initial data 

z(Oa, 0) = + iE cos(27ra), 

-y(a, O) = 0. 

For our computations we use e = 0.1. Figure 4 shows the time evolution of an 
interface with A = -0.1, g = 10, and S = 0.005. For this calculation we use 
N = 1024 and At = 2.5 x 10-4. Near t = 0.8, the interface becomes vertical in 
two symmetric positions about x = 0.5. Before t = 0.9 two small fingers appear 
and the interface begins to roll up. The fingers in the lighter fluid are thicker than 
those in the heavy fluid. Capillary waves are produced near t = 1.2 and move 
outwards from the centers of roll-up. Figure 5(a) shows the number of digits in 
the fractional change of energy for N = 1024 and N = 2048 plotted against time. 
There is a sudden loss of accuracy between t = 0.8 and t = 0.9 close to the time 
when the fingers appear. This is probably due to a remnant of Kelvin-Helmholtz 
instability. FRom this time on, and up to t = 1.4, the accuracy stays at about 
4.66 digits for N = 1024 and about 7.2 digits for N = 2048. Convergence under 
refinement is illustrated in Figure 5(b) where the 12-norm of difference in the y 
coordinate between both resolutions N = 1024 and N = 2048 is plotted against 
time. Before t = 0.8, both computations agree within almost 12 digits of accuracy. 
The spectra of y and -y plotted in Figure 6(a)-(b), show clearly the transition that 
occurs between t = 0.8 and t = 0.9 when the sudden loss of accuracy is observed. 
After t = 0.9, the spectrum saturates and the Fourier components begin to decrease. 
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FIGURE 4. Rayleigh-Taylor Instability: Time evolution of the in- 
terface with A = -0.1 and S = 0.005. Computations performed 
with N = 1024 and At = 2.5 x 10-4. 
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FIGURE 5. Rayleigh-Taylor Instability: A =-0.1 and S = 0.005. 
(a) Number of accurate digits in energy for N = 1024 and 
At = 2.5-4, and N = 2048 and At = 1.25-;4. (b) 12-norm of the 
difference in y between the computations obtained with N = 1024 
and N = 2048. 
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FIGURE 6. Rayleigh-Taylor Instability: A =-0.1 and S = 0.005. 
(a) Spectrum of y at t= 0.8,0.9 and 1.4. (b) Spectrum of y at 
t of0.8,0.9 and 1.4. 
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FIGURE 7. Rayleigh-Taylor Instability: A= -0.1 and S = 0.005. 
Sequence of interface positions. N = 2048 and At = 1.25 x 10-4. 

The computations can proceed further with still good accuracy for N =2048. 
Figure 7 shows a sequence of the interface position in time from t = 1.5 to t =1.75. 
Note that the tips of the fingers broaden as they continue to roll, and that the 
interface bends towards the tip of the fingers. At t = 1.75 , the minimum separation 
between the tip of the fingers and the opposite side of the interface is about 0.016 



176 H. D. CENICEROS AND T. Y. HOU 

and the interface length is about 1.68. The minimum distance continues to approach 
zero. By t = 1.785 (Figure 8), the separation is approximately 5 x 10-4 and the 
computations have to be stopped soon after this time. 

This process of bubble formation through self-intersection of a fluid interface 
has been observed by HLS [23] for a vortex sheet. Based on their numerical results 
and a local model, HLS have suggested that the interface minimum separation 
decreases proportional to (tc - t)2/3, reaching zero at finite t = tc. In Figure 9, 
we compare the computed minimum separations di, represented as circles in the 
plot, and a fitted curve of the form d(t) = C(tC - t)2/3 as a solid line. There is 
good agreement between the values di and d(ti) up to t = 1.76. Beyond this time, 
we see a deviation of the computed values di from the fitted curve. However, 
the number of digits in the fractional change of energy continues to decrease from 
about 4.7 at t = 1.75 (Figure 10) to less than 3 digits at the final computed time 
t = 1.785. We believe the accuracy is not high enough to resolve a separation 
of order 0(5 x 10-3) or smaller (Figure 10) and thus, more resolution is needed 
near the pinching time to give a more conclusive answer about the rate at which 
the minimum interface separation goes to zero. High accuracy can be achieved by 
selecting appropriately the parametrization function R. This has already been done 
by HLS [23] for accurate vortex sheet computations. 

Roll-up has been also observed in other numerical simulations of Rayleigh-Taylor 
instability such as the early marker-in-cell computations of Daly [18], the vortex- 
in-cell method of Tryggvason [44] and the projection method for variable density 
of Bell and Marcus [12]. However, unlike these methods, the only regularization we 
use here is surface tension. Thus, the structure of the roll-up and the formation of 
trapped bubbles through self-intersection of the interface are genuinely due to sur- 
face tension. Another approach for numerical simulation of free boundary problems 
is the level set method introduced by Osher and Sethian [33]. Recent computations 
using this technique include the motion of bubbles in water and the rising of fluid 
drops in air [16, 42]. 

t=1.785 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 8. Rayleigh-Taylor Instability: A = -0.1 and S = 0.005. 
Interface position at t = 1.785 
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FIGURE 9. Rayleigh-Taylor Instability: A =-0.1 and S = 0.005. 
Minimum separation against time. The circles are the minimum 
distance between the tip of the fingers and the opposite side of the 
interface computed with N = 2048 and At = 1.25 x 10-4. The 
solid line is a fitted curve of the form d(t) = C(tc-t)2/3 
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FIGURE 10. Rayleigh-Taylor Instability: A =-0.1 and S = 0.005. 
Number of accurate digits in the fractional change of energy against 
time. 
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7.3. Drop Formation in a Single Fluid. A drop falling from a faucet is a 
common example in which there is a change of topology in the interface and physical 
quantities become discontinuous. 

Pullin [35] has provided indications that surface tension may cause drop forma- 
tion in a falling fluid. However, his computations could not go very far due to 
numerical instability. 

To simulate the process of drop formation in a falling single fluid we take A =1 
and negative gravity constant in our method for two-density fluid interfaces. We 
remark here that, from the computational point of view, it is more efficient to use 
a velocity potential water waves formulation for which we have also designed and 
analyzed a stable method using the arclength stretching-tangent angle setting [15]. 
Numerically there is no problem in taking A =1 or A =-1 in our two-density 
method, and the numerical values from both schemes are the same within machine 
precision. 

In the numerical example we present next, g -10 and the surface tension 
coefficient is S = 0.5. We use the same initial data as in our Rayleigh-Taylor 
examples, but with a change of sign in the y coordinate. 

A sequence of the interface position for different times is presenlted in Figures 11- 
12. As the fluid falls, the interface stretches forming a pendant drop. By the time 
t = 1.3 (Figure 12) the fluid has a long neck whose minimum thickness decreases in 
time. At time t = 1.5, the interface length is more than 10 times its initial length 
and the minimum thickness of the fluid neck, just above the drop is about 0.02. 
The interface is about to pinch off. 

Figure 13 shows an apparent linear decrease of the neck thickness, and thus, 
possibly a different rate than that in the Rayleigh-Taylor roll-up. Of course, we 
still do not know the behavior of the thickness closer to the pinching. 
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FIGURE 11. Falling of a Single Fluid. Sequence of interface po- 
sitions at different times t. T = 0.25, g = -10, N- 1024 and 
A\t = 2.5 x 10-4. 
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FIGURE 12. Falling of a Single Fluid: Sequence of interface posi- 
tions at times t =1.3, t = 1.4, and t 1.5. g -10, Tr 0.25, 
N = 2048 and A?t =1.25>x 10-4. 
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FIGURE 13. Falling of a Single Fluid: Minimum thickness in the 
neck of the fluid. N = 2048 and At = 1.25 x 10-4. 

The accuracy in the energy is plotted in Figure 14, from t = 1.4 to t = 1.5. The 
calculation was performed with N = 2048 and At = 1.25 x 10-4. Before t = 1.4 
the interface is well resolved even with N = 1024 and the accuracy in the energy 
is about 9 digits. Close to t = 1.46 the accuracy decreases as the thickness of 
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FIGURE 14. Falling of a Single Fluid: Number of accurate digits 
in the fractional change of energy against time. N = 2048 and 
/\t= 1.25 x 10-4. 

the fluid neck approaches zero and the interface continues to stretch, leaving fewer 
Lagrangian grid points near the regions of high curvature. An adaptive refinement 
through the selection of a time-dependent parametrization function R may solve 
this difficulty. We will implement this idea in the future [141. 
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